

COURSE OUTCOMES

II YEAR-I SEM(NECR21)

Course Name: ENGINEERING MECHANICS

21ES1008	ENGINEERING MECHANICS
CO1	Compute the resultant of system of forces in plane and space acting on bodies. (BL-3)
CO1	Compute the resultant of system of forces in plane and space acting on bodies. (BL-3)
CO2	Solve the mechanics problems associated with friction forces. (BL-3)
	Determine the support-reactions and analyze the internal forces of the members of
CO3	various Trusses and frames. (BL-4)
CO4	Calculate the location of centroid and Moment of Inertia of composite areas. (BL-4)
CO5	Solve problems related to kinematics and kinetics. (BL-3)

Course Name: THERMODYNAMICS

21ES1011	THERMODYNAMICS
CO1	Understand the concepts of system, control volume, thermodynamic properties, thermal equilibrium, work and heat. (BL-2)
CO2	Apply the laws of thermodynamics for different work stations. (BL-3)
CO3	Analyze the performance of steam power cycles. (BL-4)
CO4	Measure the properties of pure substances. (BL-3)
CO5	Analyze air standard cycles applied in prime movers. (BL-4)

Course Name: FLUID MECHANICS AND HYDRAULIC MACHINES

21ME2001	FLUID MECHANICS AND HYDRAULIC MACHINES
CO1	Apply the concepts of fluid statics, fluid kinematics and fluid dynamics in solving the problems of fluid flows (BL-3)
CO2	Become conversant with concepts of flow through pipes, pitot tube, venturi meter, orifice meter, flow nozzle and turbine meter and able to describe them.(BL-1)
CO3	Illustrate the concepts of fluid jets on stationary and moving flat, inclined and curved vanes and also hydro power stations (BL-2)
CO4	Make use of the various concepts of water turbines for calculating the efficiencies and unit and specific quantities (BL-3)
CO5	Demonstrate the knowledge of working principles of centrifugal pumps (BL-2)

Course Name: MANUFACTURING PROCESSES

21ME2002	MANUFACTURING PROCESSES
CO1	Introduce the basic concepts of casting, pattern preparation and gating system [BL-2]
CO2	Demonstrate different special casting processes and melting systems[BL-2]
CO3	Classify working of various welding processes, weld joint and their characteristics[BL-2]
CO4	Apply the principles of various gas welding and cutting processes[BL-3]
CO5	Outline the manufacturing methods of ceramics and powder metallurgy[BL-2]

Course Name: CAD&M LAB

21ES1515	CAD&M LAB
CO1	Study basic of CAD software and study basic concept of product design (BL-1)
CO2	Use the software package for drafting and modelling and explain representation of curves for real time applications. (BL-2)
CO3	Construct 2D models of Engineering Components (BL-3)
CO4	construct 3D models of Engineering Components (BL-3)

Course Name: FLUID MECHANICS AND HYDRAULIC MACHINES LAB

21ME2501	FLUID MECHANICS AND HYDRAULIC MACHINES LAB
CO1	Acquaint with Calibration of discharge measuring devices such as Venturi meter and Orifice meter.(BL-3)
CO2	Familiarize with measuring minor loss (sudden contraction) and major loss (Frictional factor) of a given pipe to calculate hydraulic Resistance.(BL-3)
СО3	Conduct an experiment to prove Bernoulli's Theorem and to find hydraulic thrust on vanes.(BL-3)
CO4	Gain practical experience in handling various hydraulic machines like Pelton wheel (BL-3)

Course Name: MANUFACTURING PROCESSES LAB

21ME2502	MANUFACTURING PROCESSES LAB
CO1	understand the importance of safety in metal casting technology[BL-2]
CO2	Apply Hands on experience on welding machine to perform welding and cutting operations[BL-3]
CO3	Demonstrate Press Working operations on jobs[BL-2]
CO4	select the proper tools to work on a machine for the type of part required[BL-4]

COURSE OUTCOMES

II YEAR-II SEM(NECR21)

Course Name: KINEMATICS OF MACHINERY

21ME2003	KINEMATICS OF MACHINERY
CO1	Identify different types of mechanisms and inversions of different kinematic
	chains.(BL-3)
CO2	Identify and enumerate different mechanisms with basic understanding of motion
	and machine.(BL-3)
CO3	Drawing velocity and acceleration diagrams for different mechanisms. (BL-4)
CO4	Apply the knowledge of gears terminology to Calculate pitch, module, number of
	teeth ,path of Contact for meshing gears.(BL-3)
CO5	Drawing displacement diagrams and cam profile diagram for followers Executing
	different types of motions and various configurations of followers.(BL-5)

Course Name: MECHANICS OF SOLIDS

21ME2004	MECHANICS OF SOLIDS
CO1	Explain the fundamentals of Stress and Elastic Constants. (BL-2)
CO2	Illustrate shear force and bending moment diagrams. (BL-2)
CO3	Explain the methods for calculating the stress in the beams with different sections. (BL-2)
CO4	Find the shear strength of solid and hallow shafts. (BL-1)
CO5	Classifydifferentstressesandstrainsforthethinandthickcylinders(BL-2)

Course Name: METAL FORMING PROCESSES

21ME2005	METAL FORMING PROCESSES
CO1	Understand the basic concept on one, two and three dimensional stress analysis, theory of plasticity, strain hardening, hot and cold working process [BL-2]
CO2	Define different rolling and forging processes and their defects [BL-1]
CO3	Familiarize the fundamentals of extrusion process and their industrial applications[BL-2]
CO4	Identify various sheet metal working processes [BL-3]
CO5	Explain the concept of plastic manufacturing process and Rapid manufacturing process,[BL-2]

Course Name: THERMAL ENGINEERING

21ME2006	THERMAL ENGINEERING
CO1	Understand the working principle of IC engine.(BL-2)
CO2	Explain about various working systems in IC engines.(BL-2)
CO3	Describe the combustion processes of engines and identify the combustion chamber – requirements.(BL-2)
CO4	Evaluate the performance of IC engine.(BL-4)
CO5	Summarize about the types and working principles of compressors.(BL-2)

Course Name: COMPUTER AIDED MACHINE DRAWING

21ME2503	COMPUTER AIDED MACHINE DRAWING
	Define various standards, specifications, dimensioning methods followed while
	preparing Engineering drawings. (BL-1)
	Understand and practice to represent symbols for Foundation bolts and keys in drawings.(BL-2)
CO3	Develop, assemble and sketch assembled views of mechanical systems. (BL-3)
	Develop suitable drawing views to represent part drawings of different machine parts in CAD software. (BL-3)

Course Name: THERMAL ENGINEERING LAB

21ME2504	THERMAL ENGINEERING LAB
CO1	Conduct constant speed and variable speed tests on IC engines and interpret their performance.(BL-3)
CO2	Determine the valve timing diagram of SI engine& CI engine. (BL-3)
CO3	Estimate energy distribution by conducting heat balance test on IC engines(BL-5) Apply the concept of Morse test on SI engine.(multi cylinder)
CO4	Experiment on IC engine load variations with Air fuel ratio. (BL-3)

Course Name: MECHANICS OF SOLIDS LAB

21ME2505	MECHANICS OF SOLIDS LAB
CO1	Analyze the behavior of the solid bodies subjected to various types of loading.
CO2	Apply knowledge of materials and structural elements to the analysis of simple structures.
	Undertake problem identification, formulation and solution using a range of analytical methods
	Analyze and interpret laboratory data relating to behavior of structures and the materials they are made of, and undertake associated laboratory work individually and in teams.

COURSE OUTCOMES

III YEAR-I SEM(NECR21)

Course Name: DESIGN OF MACHINE ELEMENTS

21ME2007	DESIGN OF MACHINE ELEMENTS
CO1	To design machine elements subjected to fluctuating loads.(L5)
CO2	To design fasteners and welded joints subjected to different loading conditions.(L5)
CO3	To design Shafts, Keys and Coupling for industrial applications.(L5)
	To achieve an expertise in design of Sliding contact bearing in industrial applications.(L5)
	To understand and apply principles of gear design to spur gears and industrial spur gear boxes.(L2)

Course Name: MACHINE TOOLS

21ME2008	MACHINE TOOLS
CO1	Choose cutting processes and variables. (L3)
CO2	Explain the working principle of lathe machine (L2)
CO3	Identify methods to generate different surfaces types of surfaces. (L3)
CO4	Explain the work holding and tool holding devices. (L2)
CO5	Explain the construction details of Grinding machines. (L2)

Course Name: THERMAL POWER SYSTEMS

21ME2009	THERMAL POWER SYSTEMS
CO1	Understand steam formation, properties, and Rankine cycles for working of
	thermal power plants.
CO2	Describe the construction and working of low pressure and high pressure boilers,
	and concept of draught.
CO3	Explain function and importance of nozzle, and working of condensers in thermal
	power plants
CO4	Understand working of Impulse turbine and calibrate the performance parameters
	of the turbine.
CO5	Understand working of Reaction turbine and calibrate the performance parameters
	of the turbine.

Course Name: DESIGN THINKING & PRODUCT INNOVATION LAB

21ME2507	DESIGN THINKING & PRODUCT INNOVATION LAB
CO1	Learn about designing engineering products and solving problems through the
	product development process. (BTL-1)
CO2	Understand categories of design, stages in the engineering design process, from
	defining and identifying needs to elaborate design (BTL-2)
CO3	Understand Considerations of ergonomics and aesthetics in the design process,
	implementing design for manufacturing principles(BTL-2)
CO4	Learn about the concepts of setting limits, fits, and tolerances transducers. (BTL-
	1)

Course Name: MACHINE TOOLS LAB

21ME2508	MACHINE TOOLS LAB
CO1	Choose cutting processes and variables. (L3)
CO2	Explain the working principle of lathe machine (L2)
CO3	Identify methods to generate different surfaces types of surfaces. (L3)
CO4	Explain the work holding and tool holding devices. (L2)

Course Name: CAD & SIMULATION LAB

21ME2506	CAD & SIMULATION LAB
	Understanding of common mechanical components (knuckle joints, crank hooks, Plummer blocks, pipe vices).
	Conduct stress analysis of various components under different loading conditions (plane stress, plane strain, ax symmetric).
	Analyze and optimize product performance under various conditions (stress, temperature, fluid flow, etc.) before physical prototyping.
CO4	Identifying and resolving issues in code and optimizing machining processes.
	Understanding of common mechanical components (knuckle joints, crank hooks, Plummer blocks, pipe vices).

COURSE OUTCOMES

III YEAR-II SEM(NECR21)

Course Name: COMPUTER INTEGRATED MANUFACTURING

21ME2010	COMPUTER INTEGRATED MANUFACTURING
CO1	Describe the concepts CIM and Computerized elements of CIM system [BL-2].
CO2	Demonstrate Computer Aided Process Planning Logical steps in Computer Aided
	Process Planning and benefits of CAPP [BL-3]
CO3	Identify CNC programming, and its types manual part programming a mechanical
	component.[BL-2]
CO4	Describe Group Technology(GT), Part Families and Parts Classification its
	principles and applications [BL-2]
CO5	Illustrate the Classification of Robots- Robot Control systems [BL-3]

Course Name: DYNAMICS OF MACHINERY

21ME2011	DYNAMICS OF MACHINERY
CO1	Analyze stabilization of sea vehicles, aircrafts and automobile vehicles.
CO2	Understand the operations of governs in automobiles
CO3	Understand balancing of reciprocating and rotary masses
CO4	Analyze the vibration in machine comments
CO5	Analyze the vibration in machine comments and transmissibility

Course Name: HEAT TRANSFER

21ME2012	HEAT TRANSFER
CO1	Apply the concepts of different modes of heat transfer. (L3)
CO2	Apply knowledge of conduction heat transfer in the design of insulation of furnaces and pipes. (L3)
CO3	Analyse free and forced convection phenomena in external and internal flows. (L4)
CO4	Design of thermal shields using the concepts of black body and non-black body radiation. (L5)
CO5	Apply the basics of mass transfer for applications in diffusion of gases. (L3)

Course Name: POWER PLANT ENGINEERING

21ME4007-12	POWER PLANT ENGINEERING
CO1	List & understand the sources of energy, power plant economics and environmental aspects. (BL-1)
CO2	Explain the working of the components of different power plants. (BL-2)
CO3	Discuss the working principle, types, layout of diesel power plant & Gas turbines.(BL-2)
CO4	Explain the working principle, layout, auxiliary equipments of hydro electric power plant.(BL-2)
CO5	Interpret the renewable energy sources, working principle and types of nuclear power plants, working principle and advantages and hazards.(BL-2)

Course Name: INDUSTRIAL ENGINEERING

21ME4013-18	INDUSTRIAL ENGINEERING
CO1	Explain the core ideas in management, administration, and organization.(BTL-1)
CO2	Evaluate the systematic approach of increasing the value of a product.(BTL-6)
CO3	Apply method study to enhance the layout and condition of the workspace. (BTL-3)
	Evaluate the right amount of inventory on hand to satisfy consumer demand.(BTL-
CO4	1)
CO5	Defined standards for the use of engineering production, purchasing and quality
	control etc. (BTL-1)

Course Name: HEAT TRANSFER LAB

21ME2510	HEAT TRANSFER LAB
CO1	Determination of coefficient of thermal conductivity. (L2)
CO2	Identify parameters for measurement for calculating heat transfer. (L1)
	To calculate the average heat transfer co-efficient of vertical cylinder under natural Convection. (L3)
CO4	To calculate the effectiveness of a parallel and counter flow heat exchanger. (L4)

Course Name: COMPUTER AIDED MANUFACTURING LAB

21ME2509	COMPUTER AIDED MANUFACTURING LAB
CO1	Explain the concept of scale factors and their application
	Analyze the properties of curves, including continuity, smoothness, and control point influence.
CO3	Defining parameters and utilizing them to control model dimensions.
CO4	Understand the syntax and structure of G-code and M-code commands.

COURSE OUTCOMES

IV YEAR-I SEM(NECR21)

Course Name: DESIGN OF TRANSMISSION SYSTEM

21ME2013	DESIGN OF TRANSMISSION SYSTEM
CO1	Design of belts
CO2	Design of gears like spur gears and helical gears
CO3	Design spur gears and helical gears
CO4	Design of gear boxes
CO5	Design clutches and brakes

Course Name: METROLOGY AND MEASUREMENTS

21ME2014	METROLOGY AND MEASUREMENTS
CO1	Learn about linear and angular measurements. (BTL-1)
CO2	Understand about limits, fits and tolerances. (BTL-2)
CO3	Understand the surface texture measurement. (BTL-2)
CO4	Learn about the concepts of transducers. (BTL-1)
CO5	Learn about concepts of mechanical measurement. (BTL-1)

Course Name: AUTOMOBILE ENGINEERING

21ME3004	AUTOMOBILE ENGINEERING
CO1	Demonstrate the knowledge on working of various components of an
	automobile.[BT-2]
CO2	Identify and analyze the various systems and sub systems suitable for an
	automobile.[BT-2]
CO3	Explain the probable solution in the design of steering systems[BT-3]
CO4	Analyze the complex issues in suspension and braking system.[BT-4]
CO5	Apply the techniques to estimate pollution from the emissions of automobiles.[BT-
	[3]

Course Name: SOFTWARE TOOLS LAB

21ME2511	SOFTWARE TOOLS LAB
CO1	Demonstrate the various applications of simulation and analysis tools.(BTL-2)
CO2	Discuss the need of software tools to analyse engineering problem(BTL-2)
CO3	Create the model, analyse and simulate experiments to meet real world systems (BTL-6)
CO4	Evaluate the performance of the various models using thermal, vibration and modal
	analysis (BTL-5)

Course Name: METROLOGY & MEASUREMENTS LAB

21ME2512	METROLOGY & MEASUREMENTS LAB
CO1	To understand about fundaments of measurement and measuring instruments
CO2	To learn about alignments on lathe, milling, drilling and instruments used in alignment tests
CO3	To study about various instruments used in metrology and its applications
CO4	To understand basic concepts in mechanical measurements and its applications